Corrigé du contrôle 2

Exercice 1 : le problème des restes chinois

Étant donné des nombres entiers a_1 , a_2 , n_1 et n_2 , le problème des restes chinois consiste à chercher un entier x tel que

$$\begin{cases} x \equiv a_1 \mod n_1 \\ x \equiv a_2 \mod n_2 \end{cases}$$

Nous commencerons par étudier deux exemples puis proposerons une généralisation.

- 1. Considérons $n_1 = 15$ et $n_2 = 67$.
 - (a) Trouver un nombre entier α_1 tel que $67\alpha_1 \equiv 1 \mod 15$.

Commençons par réduire 67 modulo 15 : $67 \equiv 7 \mod 15$. Pour trouver α_1 , on peut faire un tableau de congruence dans $\mathbb{Z}/15\mathbb{Z}$:

On trouve ainsi une solution $\alpha_1 = 13$ puisque $7 \cdot 13 \equiv 1 \mod 15$.

On aurait aussi remarquer plus rapidement que $\overline{67} \cdot \overline{2} = \overline{7} \cdot \overline{2} = \overline{14} = -\overline{1}$. Ainsi $\overline{67} \cdot (-\overline{2}) = \overline{1}$. Le nombre -2 est donc aussi solution.

(b) Déterminer l'égalité de Bézout pour $n_1 = 15$ et $n_2 = 67$.

Appliquons l'algorithme d'Euclide :

Divisons 67 par $15:67 = 4 \cdot 15 + 7$.

Divisons 15 par 7: $15 = 2 \cdot 7 + 1$.

On obtient un reste égal à 1, l'algorithme s'arrête. On en déduit sans surprise que 67 et 15 sont premiers entre eux et on obtient l'égalité de Bézout à partir des égalités ci-dessus :

$$1 = 15 - 2 \cdot 7 = 15 - 2(67 - 4 \cdot 15) = -2 \cdot 67 + 9 \cdot 15.$$

Remarque : on aurait aussi pu déduire l'égalité de Bézout de la première question : on a vu que $67 \cdot 13 \equiv 1 \mod 15$. Plus précisément, cette relation vient de l'égalité $67 \cdot 13 = 1 + 15 \cdot 58$. Il en découle $67 \cdot 13 - 15 \cdot 58 = 1$, c'est une égalité de Bézout (différente de celle trouvée ci-dessus).

(c) En déduire un nombre entier α_2 tel que $15\alpha_2 \equiv 1 \mod 67$.

Réduisons l'égalité ci-dessus modulo 67 : comme $-2 \cdot 67 + 9 \cdot 15 = 1$, on en déduit $9 \cdot 15 \equiv 1 \mod 67$. Ainsi $\alpha_2 = 9$ est uns solution.

Remarquons qu'en réduisant l'égalité de Bézout modulo 15, on obtient $-2 \cdot 67 \equiv 1 \mod 15$. On obtient ainsi une solution $\alpha_1 = -2$ à la question 1. C'est cohérent avec notre réponse précédente puisque $-2 \equiv 13 \mod 15$.

(d) Soient a_1 et a_2 des nombres entiers et $x = 67\alpha_1 a_1 + 15\alpha_2 a_2$. Que vaut x modulo 15 et modulo 67?

Comme $67\alpha_1 \equiv 1 \mod 15$, on déduit

$$x \equiv (67\alpha_1)a_1 + 0 \equiv a_1 \mod 15.$$

De même, $15\alpha_2 \equiv 1 \mod 67$, donc

$$x \equiv 0 + (15\alpha_2)a_2 \equiv a_2 \mod 67.$$

(e) En déduire l'expression (qu'on ne demande pas d'évaluer) d'une solution du problème

$$\begin{cases} x \equiv 2 \mod 15 \\ x \equiv -1 \mod 67 \end{cases}$$

Cette solution est-elle unique?

La question précédente nous fournit une solution à ce problème en prenant $a_1 = 2$ et $a_2 = -1$. Une solution est donc $x = 67 \cdot 13 \cdot 2 + 15 \cdot 9 \cdot (-1)$ (elle vaut 1607).

Cette solution n'est pas unique. L'égalité de Bézout n'est en effet pas unique et nous aurions pu trouver d'autres nombres α_1 et α_2 solutions des questions 1 et 3. La solution x correspondante aurait alors été différente de celle-ci. Par exemple, avec $\alpha_1 = -2$ et $\alpha_2 = 9+67 = 76$, on trouve une nouvelle solution $x' = 67 \cdot (-2) \cdot 2 + 15 \cdot 76 \cdot (-1)$ (qui vaut -1408).

2. Considérons maintenant $n_1 = 15$ et $n_2 = 50$. Démontrer que le problème

$$\begin{cases} x \equiv 2 \mod 15 \\ x \equiv 3 \mod 50 \end{cases}$$

n'a pas de solution $x \in \mathbf{Z}$.

Ce système n'a pas de solution car 15 et 50 ne sont pas premiers entre eux : ils ont 5 pour facteur commun . Regardons cela en détail :

Supposons par l'absurde qu'une solution $x \in \mathbf{Z}$ existe. On a alors $x \equiv 2 \mod 15$ et $x \equiv 3 \mod 50$. Traduisons : il existe des entiers k et ℓ tels que x = 2 + 15k et $x = 3 + 50\ell$. Ainsi $2 + 15k = 3 + 50\ell$, donc $15k - 50\ell = 1$. Or 5 divise 15k et 50ℓ . Il divise donc leur différence. Donc 5 divise 1, ce qui est absurde. On en déduit que le problème n'a pas de solution $x \in \mathbf{Z}$.

3. Soient n_1 et n_2 des nombres premiers entre eux, et a_1 , a_2 des nombres entiers. En vous appuyant sur la méthode employée dans le premier exemple, démontrer qu'il existe un nombre entier x tel que

$$\begin{cases} x \equiv a_1 \mod n_1 \\ x \equiv a_2 \mod n_2 \end{cases}$$

Comme n_1 et n_2 sont premiers entre eux, on peut appliquer le théorème de Bézout : il existe des entiers u et v tels que $n_1u + n_2v = 1$.

Alors on en déduit $n_1u \equiv 1 \mod n_2$ et $n_2v \equiv 1 \mod n_1$.

Posons $x = n_1 u a_2 + n_2 v a_1$.

D'après ce qui précède, on obtient en réduisant x modulo n_2 :

$$x \equiv 0 + (n_2 v)a_1 \equiv a_1 \mod n_1$$
.

Et de même

$$x \equiv (n_1 u)a_2 \equiv a_2 \mod n_2.$$

Nous avons ainsi bien démontré qu'il existait un entier x solution du système de congruences.

Notre preuve contient même la méthode effective pour trouver x: elle repose sur l'égalité de Bézout pour n_1 et n_2 que l'on sait établir grâce à l'algorithme d'Euclide.

L'exemple de la question 2 montre que l'hypothèse « n_1 et n_2 premiers entre eux » est importante. Sans elle, on ne peut pas toujours garantir l'existence d'une solution au système de congruence.

Dernière remarque : le problème des restes chinois s'étend à des systèmes de congruences de plus de deux équations. Il doit son nom au fait qu'on en retrouve la trace dans de très vieux traités de mathématiques chinois.

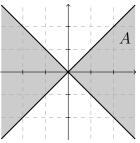
Exercice 2: une lemniscate

 $finir\ A\ simplement.$

Le but de ce problème est d'étudier l'ensemble

$$E = \{ (r\cos(t), r\cos(t)\sin(t)) ; r \in [0, 1], t \in \mathbf{R} \}.$$

Soit A l'ensemble représenté ci-contre. Le bord de A est constitué de deux droites qui font partie de A.
 Donner, sans justification, une définition mathématique de A.
 Remarque : l'utilisation de la valeur absolue peut permettre de dé-



L'ensemble A est délimité par les droites d'équations y = x et y = -x. Mais il faut distinguer deux cas pour décrire les deux parties de A:

$$A = \{(x, y) \in \mathbf{R}^2 \mid x \ge 0 \text{ et } -x \le y \le x\} \cup \{(x, y) \in \mathbf{R}^2 \mid x \le 0 \text{ et } x \le y \le -x\}.$$

Nous avons utilisé des inégalités larges car le bord de A fait partie de A. Cette écriture de A peut être simplifiée en utilisant des valeurs absolues :

$$A = \{(x, y) \in \mathbf{R}^2 \mid |x| \geqslant |y|\}.$$

2. Démontrer $E \subset A$.

Soit $(x,y) \in E$. Par définition de E, il existe $r \in [0,1]$ et $t \in \mathbf{R}$ tels que $(x,y) = (r\cos(t), r\cos(t)\sin(t))$. On sait que $|\sin(t)| \leq 1$. On en déduit

$$|y| = |r\cos(t)\sin(t)| = |r\cos(t)||\sin(t)| \le |r\cos(t)| = |x|.$$

Ainsi le couple (x, y) satisfait l'inégalité définissant A. On en déduit $(x, y) \in A$. Nous avons bien montré $E \subset A$.

3. Démontrer également que E est inclus dans le disque de centre (0,0) et de rayon 1.

Ce disque est défini par

$$D = \{(x, y) \in \mathbf{R}^2 \mid x^2 + y^2 \le 1\}.$$

Reprenons le même raisonnement qu'à la question précédente. Soit $(x, y) = (r \cos(t), r \cos(t) \sin(t))$ un élément de E, avec $r \in [0, 1]$ et $t \in \mathbf{R}$. Alors $x^2 + y^2 = r^2 \cos^2(t) + r^2 \cos^2(t) \sin^2(t)$. Or $|\cos(t)| \le 1$ et $|r| \le 1$. Donc

$$r^{2}\cos^{2}(t) + r^{2}\cos^{2}(t)\sin^{2}(t) \leq 1 \cdot \cos^{2}(t) + 1 \cdot 1 \cdot \sin^{2}(t) = 1.$$

Ainsi $x^2 + y^2 \le 1$. On en déduit $(x, y) \in D$. Donc $E \subset D$.

4. Soit f l'application définie sur **R** par $f(t) = \cos(t)\sin(t)$. Déterminer son image $f(\mathbf{R})$.

Pour déterminer l'image de f, on peut en faire son étude analytique (dérivée, tableau de variation, etc). Il est plus facile de commencer par exprimer f différemment en reconnaissant une formule trigonométrique : pour tout $t \in \mathbf{R}$, $f(t) = \cos(t)\sin(t) = \frac{1}{2}\sin(2t)$.

On sait que pour tout $t, -1 \le \sin(2t) \le 1$. On en déduit que pour tout $t, -\frac{1}{2} \le f(t) \le \frac{1}{2}$. Ainsi $f(\mathbf{R}) \subset [-\frac{1}{2}, \frac{1}{2}]$.

D'autre part, la fonction f est une fonction continue sur \mathbf{R} . On a $f(\frac{\pi}{4}) = \frac{1}{2}$ et $f(-\frac{\pi}{4}) = -\frac{1}{2}$. D'après le théorème des valeurs intermédiaires, on déduit que toutes les valeurs de l'intervalle $[-\frac{1}{2},\frac{1}{2}]$ sont prises par la fonction f. On en déduit $[-\frac{1}{2},\frac{1}{2}] \subset f(\mathbf{R})$.

Par double inclusion, on conclut $f(\mathbf{R}) = [-\frac{1}{2}, \frac{1}{2}].$

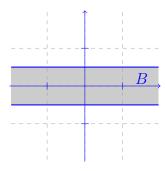
5. En déduire que E est inclus dans un ensemble de la forme $B=\{(x,y)\in {\bf R}^2\mid -b\leqslant y\leqslant b\},$ où b est un nombre réel que l'on précisera. Représenter cet ensemble.

Montrons que $E \subset B$ avec $b = \frac{1}{2}$. Soit $(x, y) = (r \cos(t), r \cos(t) \sin(t))$ un élément de E, avec $r \in [0, 1]$ et $t \in \mathbf{R}$. Alors, comme $|r| \leq 1$,

$$|y| = |r\cos(t)\sin(t)| \leqslant 1 \cdot |f(t)| \leqslant \frac{1}{2}$$

d'après la question précédente. Ainsi $-\frac{1}{2} \leqslant y \leqslant \frac{1}{2}$ et on en déduit que $(x,y) \in B$. Donc $E \subset B$.

L'ensemble B se représente ainsi :



6. Démontrer que le couple $(\frac{\sqrt{3}}{2}, \frac{1}{2})$ n'est pas un élément de E.

Indication : on pourra raisonner par l'absurde et chercher des paramètres r et t correspondant à ce point.

Supposons par l'absurde que $(\frac{\sqrt{3}}{2}, \frac{1}{2}) \in E$. Alors il existe $r \in [0, 1]$ et $t \in \mathbf{R}$ tels que $(\frac{\sqrt{3}}{2}, \frac{1}{2}) = (r\cos(t), r\cos(t)\sin(t))$.

Ainsi $r\cos(t) = \frac{\sqrt{3}}{2}$ et $r\cos(t)\sin(t) = \frac{1}{2}$. En reportant la première égalité dans la seconde, on obtient $\frac{\sqrt{3}}{2}\sin(t) = \frac{1}{2}$, donc $\sin(t) = \frac{1}{\sqrt{3}}$.

Or $\cos^2(t) + \sin^2(t) = 1$ et on sait ici que $\cos(t) > 0$. Donc $\cos(t) = \sqrt{1 - \sin^2(t)} = \sqrt{1 - \frac{1}{3}} = \sqrt{\frac{2}{3}}$.

Enfin, comme $r\cos(t) = \frac{\sqrt{3}}{2}$, on déduit $r = \frac{\sqrt{3}}{2}\sqrt{\frac{3}{2}} = \frac{3}{2\sqrt{2}}$.

Or $3 > 2\sqrt{2}$ (car 9 > 8), donc r > 1. Cela contredit notre hypothèse initiale dans laquelle $r \in [0,1]$. Nous avons ainsi démontré que le couple $(\frac{\sqrt{3}}{2},\frac{1}{2})$ n'appartient pas à E.

7. Démontrer que le couple $(\frac{\sqrt{3}}{2}, \frac{1}{4})$ est élément de E.

Il faut reprendre le raisonnement précédent, non pas pour aboutir à une absurdité, mais pour trouver les paramètres r et t qui correspondent au couple $(\frac{\sqrt{3}}{2}, \frac{1}{4})$. Il n'est pas nécessaire de les trouver explicitement, il faut simplement justifier qu'ils existent. Ces calculs constituent le travail d'analyse qui nous permettent de rédiger la synthèse suivantes.

Posons $r=\frac{3}{\sqrt{11}}$. D'autre part, comme $\sin([0,\frac{\pi}{2}])=[0,1]$ et $\frac{1}{2\sqrt{3}}\in[0,1]$, il existe $t\in[0,\frac{\pi}{2}]$ tel que $\sin(t) = \frac{1}{2\sqrt{3}}$.

Alors
$$\cos(t) > 0$$
 et $\cos(t) = \sqrt{1 - \sin^2(t)} = \sqrt{1 - \frac{1}{12}} = \frac{\sqrt{11}}{2\sqrt{3}}$.

Alors
$$r\cos(t) = \frac{3}{\sqrt{11}} \frac{\sqrt{11}}{2\sqrt{3}} = \frac{\sqrt{3}}{2}$$
 et $r\cos(t)\sin(t) = \frac{\sqrt{3}}{2} \frac{1}{2\sqrt{3}} = \frac{1}{4}$

Alors $r\cos(t) = \frac{3}{\sqrt{11}} \frac{\sqrt{11}}{2\sqrt{3}} = \frac{\sqrt{3}}{2}$ et $r\cos(t)\sin(t) = \frac{\sqrt{3}}{2} \frac{1}{2\sqrt{3}} = \frac{1}{4}$. Nous avons donc bien montré qu'il existait $r \in [0,1]$ et $t \in \mathbf{R}$ tels que $(r\cos(t), r\cos(t)\sin(t)) = \frac{1}{2} \frac{1}{$ $(\frac{\sqrt{3}}{2}, \frac{1}{4})$. Donc $(\frac{\sqrt{3}}{2}, \frac{1}{4}) \in E$.

8. Sur une grande figure, représenter les éléments de E correspondant aux couples de paramètres (r, t) avec $r \in \{0, \frac{1}{2}, 1\}$ et $t \in \{0, \frac{\pi}{6}, \frac{\pi}{4}, \frac{\pi}{3}, \frac{\pi}{2}\}$.

Notons $g(r,t) = (r\cos(t), r\cos(t)\sin(t))$. Alors, pour tout $t \in \mathbf{R}$, g(0,t) = (0,0). Et

$$g(1,0)=(1,0), \ g(1,\tfrac{\pi}{6})=(\tfrac{\sqrt{3}}{2},\tfrac{\sqrt{3}}{4}), \ g(1,\tfrac{\pi}{4})=(\tfrac{\sqrt{2}}{2},\tfrac{1}{2}), \ g(1,\tfrac{\pi}{3})=(\tfrac{1}{2},\tfrac{\sqrt{3}}{4}), \ g(1,\tfrac{\pi}{2})=(0,0),$$

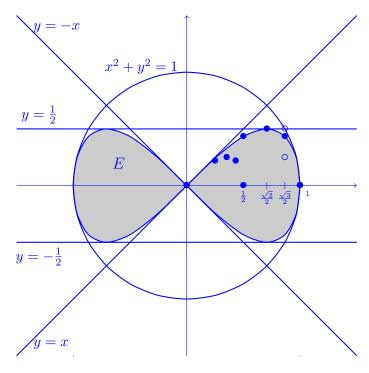
$$g(\frac{1}{2},0)=(\frac{1}{2},0), \ \ g(\frac{1}{2},\frac{\pi}{6})=(\frac{\sqrt{3}}{4},\frac{\sqrt{3}}{8}), \ \ g(\frac{1}{2},\frac{\pi}{4})=(\frac{\sqrt{2}}{4},\frac{1}{4}), \ \ g(\frac{1}{2},\frac{\pi}{3})=(\frac{1}{4},\frac{\sqrt{3}}{8}), \ \ g(\frac{1}{2},\frac{\pi}{2})=(0,0).$$

Nous représentons ces 9 éléments de E sur la figure plus bas.

9. Sur cette même figure, représenter l'allure de l'ensemble E, en faisant bien apparaître toutes les propriétés démontrées précédemment.

Nous avons démontré que E est inclus dans A, D et B. Il est donc inclus dans leur intersection. D'autre part, les points calculés précédemment nous donnent une bonne idée de l'allure de E. Il est délimité par la courbe obtenue pour r=1, formée des points de la forme $(\cos(t), \cos(t)\sin(t))$. En faisant varier r entre 0 et 1, nous obtenons tous les points intérieurs à cette courbe. Et pour des raisons de parité et de périodicité, la courbe complète se déduit de ce qu'on obtient pour $t \in [0, \frac{\pi}{2}]$.

On obtient finalement l'ensemble représenté ci-dessous. On remarque bien que le point $(\frac{\sqrt{3}}{2}, \frac{1}{2})$, situé sur le cercle, n'appartient pas à E mais que le point $(\frac{\sqrt{3}}{2}, \frac{1}{4})$ y est bien.



Le terme lemniscate est utilisé pour décrire les courbe en forme de 8.