STH1, Algèbre 1 octobre 2022

Contrôle 1

Calculatrice et documents sont interdits.

Tous les résultats doivent être correctement rédigés et rigoureusement justifiés.

Durée de l'épreuve : 40 minutes.

Le barème est donné à titre indicatif : 7 - 4.

La qualité de la rédaction sera fortement prise en compte dans la notation.

Exercice 1

Soit $(u_n)_{n\in\mathbb{N}}$ une suite de nombres réels. On considère la proposition P suivante qui concerne cette suite.

$$\exists M \in \mathbf{R}, \ \forall n \in \mathbf{N}, \ u_n \leqslant M.$$

1. Traduire la proposition en langage courant.

Trois réponses : « La suite est majorée. » « Elle admet un majorant. » « Il existe un nombre réel supérieur à tous les termes de la suite. »

2. Donner la négation de P en langage mathématique.

$$\neg P: \forall M, \exists n \in \mathbf{N}, u_n > M.$$

3. On considère la suite définie par $u_n = n \times (-1)^n$. Démontrer ou infirmer la proposition P pour cette suite.

La proposition P est fausse pour cette suite. On constate en effet que cette suite peut prendre des valeurs arbitrairement grandes (quand n est pair) et n'est donc pas majorée. Démontrons-le avec la définition de $\neg P$:

Soit $M \in \mathbf{R}$.

Soit n un entier pair strictement supérieur à M. Si M < 0, on peut prendre n = 0, sinon on peut choisir n = E(M) + 1 ou E(M) + 2 selon la parité de la partie entière E(M) de M.

Alors n > M, et comme n est pair, $u_n = (-1)^n \times n = n$.

Donc $u_n > M$.

Nous avons bien montré : $\forall M, \exists n \in \mathbb{N}, u_n > M$.

Donc $\neg P$ est vraie et P est fausse.

On considère maintenant la suite définie par $u_0 = 0$ et : $\forall n \ge 0$, $u_{n+1} = u_n + \frac{1}{(n+1)^2}$.

4. Calculer u_1 , u_2 et u_3 .

$$u_1 = u_0 + \frac{1}{(0+1)^2} = 1$$
, $u_2 = u_1 + \frac{1}{(1+1)^2} = \frac{5}{4}$ et $u_3 = u_2 + \frac{1}{(2+1)^2} = \frac{49}{36}$.

5. Démontrer : $\forall n \in \mathbf{N}^*, \quad \frac{1}{n} - \frac{1}{(n+1)^2} \geqslant \frac{1}{n+1}.$

Soit $n \in \mathbb{N}^*$. Alors

$$\frac{1}{n} - \frac{1}{(n+1)^2} - \frac{1}{n+1} = \frac{(n+1)^2}{n(n+1)^2} - \frac{n}{n(n+1)^2} - \frac{n(n+1)}{n(n+1)^2}$$
$$= \frac{n^2 + 2n + 1 - n - n^2 - n}{n(n+1)^2}$$
$$= \frac{1}{n(n+1)^2}$$
$$\geqslant 0.$$

On en déduit bien $\frac{1}{n} - \frac{1}{(n+1)^2} \geqslant \frac{1}{n+1}$.

6. Démontrer par récurrence : $\forall n \in \mathbf{N}^*, \ u_n \leq 2 - \frac{1}{n}$.

Attention, la proposition n'est valable qu'à partir de n = 1. Il faut donc initialiser à n=1.

Initialisation : pour n = 1, $u_1 = 1$ et on a bien $1 \leq 2 - \frac{1}{1}$.

Hérédité : soit $n \in \mathbb{N}^*$. Supposons que $u_n \leq 2 - \frac{1}{n}$.

Alors $u_{n+1} = u_n + \frac{1}{(n+1)^2}$.

D'après l'hypothèse de récurrence, $u_{n+1} \le 2 - \frac{1}{n} + \frac{1}{(n+1)^2}$.

Or nous avons montré que $\frac{1}{n} - \frac{1}{(n+1)^2} \ge \frac{1}{n+1}$, donc $2 - \frac{1}{n} + \frac{1}{(n+1)^2} \le 2 - \frac{1}{n+1}$.

Ainsi $u_{n+1} \leqslant 2 - \frac{1}{n+1}$

Par récurrence, le résultat est démontré pour tout $n \in \mathbb{N}^*$.

7. En déduire que la suite $(u_n)_{n \in \mathbb{N}}$ satisfait la proposition P.

Posons M = 2. Montrons: $\forall n \in \mathbb{N}, u_n \leq M$.

Soit $n \in \mathbb{N}$.

Si n = 0, alors $u_0 = 0 \le 2$.

Si $n \in \mathbb{N}^*$, alors $u_n \leq 2 - \frac{1}{n}$ d'après la question précédente, donc $u_n \leq 2$.

Ainsi, dans tous les cas, $u_n \leq 2$: la suite est majorée par 2.

Exercice 2

Considérons la proposition Q:

- « Il existe deux entiers relatifs non nuls tels que leur somme soit égale à leur produit. »
- 1. Traduire cette proposition en langage mathématique.

$$Q: \ \exists a \in \mathbf{Z}^*, \ \exists b \in \mathbf{Z}^*, \ a+b=ab \qquad \text{ou} \qquad Q: \ \exists a \in \mathbf{Z}, \ \exists b \in \mathbf{Z}, \ a \neq 0 \land b \neq 0 \land a+b=ab.$$

2. Donner sa négation en langage mathématique.

$$\neg Q: \forall a \in \mathbf{Z}^*, \forall b \in \mathbf{Z}^*, \ a+b \neq ab$$

3. Démontrer la proposition Q.

Posons a = 2 et b = 2. Alors a et b sont bien des entiers relatifs non nuls et a+b=4=ab.

4. Montrer qu'il y a unicité des deux entiers satisfaisant la proposition.

Indication : on pourra montrer que si deux entiers satisfont la propriété, alors nécessairement, chacun d'eux est divisible par son prédécesseur.

Soient a et b deux entiers non nuls qui satisfont a + b = ab.

Alors b = ab - a, donc b = a(b - 1).

Comme il s'agit d'entiers, on en déduit que b-1 divise b (et aussi que a divise b).

Or les seuls entiers divisibles par leur prédécesseur sont 0 (qui est divisible par -1) et 2 (qui est divisible par 1).

Or $b \neq 0$, donc b = 2.

On en déduit alors que a=2.

Comme nous savons déjà que (a,b) = (2,2) est bien solution, nous avons démontré qu'il ne pouvait pas y en avoir d'autre.